If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4800-560x+12x^2=0
a = 12; b = -560; c = +4800;
Δ = b2-4ac
Δ = -5602-4·12·4800
Δ = 83200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{83200}=\sqrt{6400*13}=\sqrt{6400}*\sqrt{13}=80\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-560)-80\sqrt{13}}{2*12}=\frac{560-80\sqrt{13}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-560)+80\sqrt{13}}{2*12}=\frac{560+80\sqrt{13}}{24} $
| 15n^2-25n=0 | | 1/4y-11=1/5y | | 2(x2+x)=x+1 | | -36=-9(d-94) | | 3.5x+4.5=x-0.5 | | -7/5k+6/7=8+5/7k | | 55=6n-5 | | 25-3y=13 | | 0=-30x | | 0=6x+14 | | 10+3r=82 | | 20=4(t-92) | | 2=6−2y | | 20 = f3+ 17 | | 3j+2=5 | | 1/2x=1/4=1(5/6x-3) | | 2(j-42)=18 | | 12x+9=4x+9 | | c/9+39=47 | | -¾t=-12 | | 4x*1=x+7 | | 10-6x=6-2x | | (1+x)^4=0 | | 22-(x+7)=9x+5 | | 14+9w=77 | | 20x-9=40x-7 | | 93=10y+13 | | 20x+9=40x-7 | | 52=x•87 | | (3x+2x)+10=90 | | 7=p+17/6 | | j/9+10=13 |